494 research outputs found

    Portable Polarimetric Fiber Stress Sensor System for Visco-elastic and Biomimetic Material Analysis

    Get PDF
    Non-destructive materials characterization methods have significantly changed our fundamental understanding of material behavior and have enabled predictive models to be developed. However, the majority of these efforts have focused on crystalline and metallic materials, and transitioning to biomaterials, such as tissue samples, is non-trivial, as there are strict sample handling requirements and environmental controls which prevent the use of conventional equipment. Additionally, the samples are smaller and more complex in composition. Therefore, more advanced sample analysis methods capable of operating in these environments are needed. In the present work, we demonstrate an all-fiber-based material analysis system based on optical polarimetry. Unlike previous polarimetric systems which relied on free-space components, our method combines an in-line polarizer, polarization-maintaining fiber, and a polarimeter to measure the arbitrary polarization state of the output, eliminating all free-space elements. Additionally, we develop a more generalized theoretical analysis which allows more information about the polarization state to be obtained via the polarimeter. We experimentally verify our system using a series of elastomer samples made from polydimethylsiloxane (PDMS), a commonly used biomimetic material. By adjusting the base:curing agent ratio of the PDMS, we controllably tune the Young’s modulus of the samples to span over an order of magnitude. The measured results are in good agreement with those obtained using a conventional load-frame system. Our fiber-based polarimetric stress sensor shows promise for use as a simple research tool that is portable and suitable for a wide variety of applications

    Spatiotemporal Fluorescent Detection Measurements Using Embedded Waveguide Sensors

    Get PDF
    Integrated waveguide biosensors, when combined with fluorescent labeling, have significantly impacted the field of biodetection. While there are numerous types of waveguide sensors, the fundamental excitation method is fairly consistent: the evanescent field of the waveguide excites a fluorophore whose emission is detected, either directly via imaging or indirectly via a decrease in power transfer. Recently, a sensor device was demonstrated which is able to back-couple the emitted light into the waveguide, allowing the signal to be detected directly. However, this previous work focused on the development of an empirical model, leaving many theoretical questions unanswered. Additionally, the results from the novel back-coupling route were not compared with the results from the more conventional imaging technique. In this study, we develop finite difference time domain simulations to predict the sensor\u27s performance both in air and aqueous environments. We also perform complementary experiments to verify the modeling, measuring the fluorescence coupled into the waveguide, and radiated perpendicular to the waveguide. Finally, we performed spatiotemporal measurements of the fluorescence on the waveguide. Utilizing these measurements, we are able to measure the fluorescent decay rate of the fluorescent dye at arbitrary points along the length of the waveguide

    Label-free single-molecule all-optical sensor

    Get PDF
    Recently, quality factors greater than 100 million were demonstrated using planar arrays of silica microtoroid resonators. These high Q factors allow the toroidal resonators to perform very sensitive detection experiments. By functionalizing the silica surface of the toroid with biotin, the toroidal resonators become both specific and sensitive detectors for Streptavidin. One application of this sensor is performing detection in lysates. To mimic this type of environment, additional solutions of Streptavidin were prepared which also contained high concentrations (nM and μM) of tryptophan

    Detailed design of a lattice composite fuselage structure by a mixed optimization method

    Get PDF
    In this paper, a procedure for designing a lattice fuselage barrel has been developed and it comprises three stages: first, topology optimization of an aircraft fuselage barrel has been performed with respect to weight and structural performance to obtain the conceptual design. The interpretation of the optimal result is given to demonstrate the development of this new lattice airframe concept for the fuselage barrel. Subsequently, parametric optimization of the lattice aircraft fuselage barrel has been carried out using Genetic Algorithms on metamodels generated with Genetic Programming from a 101-point optimal Latin hypercube design of experiments. The optimal design has been achieved in terms of weight savings subject to stability, global stiffness and strain requirements and then was verified by the fine mesh finite element simulation of the lattice fuselage barrel. Finally, a practical design of the composite skin complying with the aircraft industry lay-up rules has been presented. It is concluded that the mixed optimization method, combining topology optimization with the global metamodel-based approach, has allowed to solve the problem with sufficient accuracy as well as provided the designers with a wealth of information on the structural behaviour of the novel anisogrid composite fuselage design

    Click chemistry surface functionalization for resonant micro-cavity sensors

    Get PDF
    Micro-cavity resonant sensors have outer surfaces that are functionalized using click chemistry, e.g., involving a cycloaddition reaction of an alkyne functional group and an azide functional group. A first polymer linking element binds to an outer surface of the micro-cavity and has an azide functional group, which bonds to an alkyne functional group of a second polymer linking element as a result of a cycloaddition reaction. A functionalization element such as an antibody, antigen or protein for sensing a target molecule is bound to the second linking element

    MR blockade protects against diet induced obesity, adipocyte dysfunction and cardiac inflammation in mice, through browning of the adipose organ and modulation of autophagy

    Get PDF
    Obesity is a key factor in the development of insulin resistance (IR), cardiovascular disease, hypertension, type 2 diabetes etc. Given the near epidemic incidence of obesity in western society there is a clear need for effective treatment options. Mineralocorticoid receptor (MR) blockade has shown significant promise in transgenic mouse models of obesity in limiting IR and adipocyte dysfunction, a disease that is independent of classical MR actions (renal). Female 10-weekold C57bl6 mice were fed with normal chow or a high fat (HF) diet for 12 weeks. Mice fed HF diet were concomitantly treated for 12 weeks with drospirenone (DRSP, 6 mg/kg/day), a potent MR antagonist with antiadipogenic activity, or spironolactone (SPIRO, 20 mg/kg/day). Mice fed HF diet showed a significant increase in total body weight, fat mass, mean adipocyte size, expression of white adipose tissue (WAT) marker genes and showed impaired glucose tolerance after intraperitoneal plasma glucose tolerance test. DRSP and SPIRO prevented weight gain and white fat mass expansion induced by HF diet in parametrial, perivescical, and inguinal depots without affecting interscapular fat pad weight. Magnetic Resonance Imaging (MRI) confirmed that MR antagonists blocked the HF dietdriven expansion of abdomino-pelvic (parametrial and perivescical) fat volume. High levels of MR mRNA were detected in all depots of adipose tissue. HF fed mice showed no increase in heart or kidney weight and tissue fibrosis. Cardiac macrophage recruitment and osteopontin staining was increased in hearts of HF fed mice and reversed by both MR antagonists. Moreover, both DRSP and SPIRO prevented the impaired glucose tolerance in mice fed HF diet, and countered HF diet-induced up-regulation of WAT markers transcripts and adipocyte hypertrophy. Importantly, MR antagonists increased uncoupling protein 1 (UCP-1) positive brown-like adipocyte content in WAT, and improved metabolic activity of adipose tissue, as indicated by PET/CT imaging. In keeping with this, MR antagonism significantly increased expression of brown-like adipocyte marker genes such PRDM16, CIDEA, beta-3 adrenergic receptor (ADRB3) and UCP-1 in all WAT depots analysed. In exploring the mechanism, we demonstrated that MR antagonism induced brown adipose tissue (BAT) markers, and reduced the autophagic rate, a key remodelling process in adipocyte differentiation, in WAT depots in vivo as well as in primary cultured adipocytes. We conclude that adipocyte MR regulates BAT-like remodeling of WAT through modulation of autophagy. MR blockade therefore has promise as a novel therapeutic option for the prevention of metabolic dysfunctions and the cardiac consequences of obesity. doi:10.1016/j.ijcme.2015.05.012 Transcriptional control of ICAM-1 in human coronary artery endothelial cells by Mineralocorticoid Receptor (MR): Implications for the protective effects of MR antagonists in cardiovascular diseases V. Marzolla, A. Armani, A. Fabbri, I.Z. Jaffe, M. Caprio Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Pisana, Rome, Italy Department of Medicina dei Sistemi, Endocrinology Unit, S. Eugenio & CTO A. Alesini Hospitals, University Tor Vergata, Rome, Italy Molecular Cardiology Research Institute, Tufts Medical Center, Boston

    Inferring periodic orbits from spectra of simple shaped micro-lasers

    Get PDF
    Dielectric micro-cavities are widely used as laser resonators and characterizations of their spectra are of interest for various applications. We experimentally investigate micro-lasers of simple shapes (Fabry-Perot, square, pentagon, and disk). Their lasing spectra consist mainly of almost equidistant peaks and the distance between peaks reveals the length of a quantized periodic orbit. To measure this length with a good precision, it is necessary to take into account different sources of refractive index dispersion. Our experimental and numerical results agree with the superscar model describing the formation of long-lived states in polygonal cavities. The limitations of the two-dimensional approximation are briefly discussed in connection with micro-disks.Comment: 13 pages, 19 figures, accepted for publication in Physical Review

    Spectrometer Scan Mechanism for Encountering Jovian Orbit Trojan Asteroids

    Get PDF
    This paper describes the design, testing, and lessons learned during the development of the Lucy Ralph (L'Ralph) Scan Mirror System (SMS), composed of the Scan Mirror Mechanism (SMM), Differential Position Sensor System (DPSS) and Mechanism Control Electronics (MCE). The L'Ralph SMS evolved from the Advanced Topographic Laser Altimeter System (ATLAS) Beam Steering Mechanism (BSM), so design comparisons will be made. Lucy is scheduled to launch in October 2021, embarking upon a 12-year mission to make close range encounters in 2025 and 2033 with seven Trojan asteroids and one main belt asteroid that are within the Jovian orbit. The L'Ralph instrument is based upon the New Horizons Ralph instrument, which is a panchromatic and color visible imager and infrared spectroscopic mapper that slewed the spacecraft for imaging. The L'Ralph SMM is to provide scanning for imaging to eliminate the need to slew the spacecraft. One purpose of this paper is to gain understanding of the reasoning behind some of the design features as compared with the ATLAS BSM. We will identify similarities and differences between the ATLAS BSM and the L'Ralph SMM that resulted from the latter's unique requirements. Another purpose of this paper is to focus upon "Lessons Learned" that came about during the development of the L'Ralph SMM and its MCE, both mechanism engineering issues and solutions as well as Ground Support Equipment (GSE) issues and solutions that came about during the validation of requirements process. At the time of this writing, the L'Ralph SMM has been flight qualified and delivered to the project

    Recent progress on the accurate determination of the equation of state of neutron and nuclear matter

    Full text link
    The problem of accurately determining the equation of state of nuclear and neutron matter at density near and beyond saturation is still an open challenge. In this paper we will review the most recent progress made by means of Quantum Monte Carlo calculations, which are at present the only ab-inito method capable to treat a sufficiently large number of particles to give meaningful estimates depending only on the choice of the nucleon-nucleon interaction. In particular, we will discuss the introduction of density-dependent interactions, the study of the temperature dependence of the equation of state, and the possibility of accurately studying the effect of the onset of hyperons by developing an accurate hyperon-nucleon and hyperon-nucleon-nucleon interaction.Comment: 3 figures, 1 table, to appear in the Proceedings of "XIII Convegno di Cortona su Problemi di Fisica Nucleare Teorica", Cortona (Italy), April 6-8, 201
    • …
    corecore